Machine Learning and Genome Data Analytics (Genome Institute of Singapore)

Genome Institute of Singapore
Laboratory for Systems Biology and Data Analytics
Singapore Singapore Singapore


The Single-Cell In Situ Spatial Omics at subcellular Resolution (SCISSOR) team is looking for smart, motivated machine learning and data analytics researchers who can contribute to the development of new imaging-based methods for understanding and diagnosing cancer. The candidate should have strong mathematical intuition and programming skills, and be comfortable working in a highly collaborative multidisciplinary environment that includes biologists, imaging technologists, pathologists and medical oncologists. This will be a unique opportunity to learn cutting edge data analytics and computational biology techniques in the rapidly growing field of spatial Omics.
SCISSOR is a well-supported multidisciplinary program that creates spatial and non-spatial genomic technologies, applies them to clinical samples, generates massive multimodal datasets and interprets them to infer the molecular drivers of tumor growth and response to immunotherapy and other treatments. We have a track record of combining cutting-edge computational and experimental approaches to infer disease mechanisms and develop clinical applications (Chen et al., Science 2015; Li et al., Nat Genet 2017; Sun et al., Cell 2016; Fukawa et al., Nat Med 2016; del Rosario et al., Nat Methods 2015; Kumar et al., Nat Biotechnol 2013; Ku et al., Lancet Oncol 2012).


• Bachelor’s or Master’s degree in Bioinformatics, Computational Biology, Data Science, or a related field
• High proficiency in scripting language (Perl, Python and statistical languages such as R, particularly in the use of packages such as Bioconducter or Biopython)
• Additional programming skills in Java or C++ will be useful and candidate should be experienced working in Unix environments with computing clusters/servers
• A strong background and course work in statistics, computer science and data science is preferable

Start date

As soon as possible

How to Apply

Please email your CV and names of referees


Dr. Shyam Prabhakar, Dr. Nirmala Arul Rayan,